畢業後的第二年:從校園到雲端

Second Year After Graduation: From Campus to Cloud

——一位雲端工程師的職業歷程與啟示

— Career Journey and Insights from a Cloud Engineer

雲計算 Cloud Computing
DevOps DevOps
人工智能 AI

姓名:Timmy

Name: Timmy

職位:雲端工程師 / DevOps

Position: Cloud Engineer / DevOps

1 / 5

畢業求職:期望與現實的差距

Job Search: Expectations vs. Reality

期望

Expectations

  • 簡歷投遞後很快會有回音
  • Quick responses after resume submission
  • 面試機會眾多
  • Numerous interview opportunities
  • 選擇多樣化
  • Diverse choices

現實

Reality

  • 投了大量簡歷,大多石沉大海
  • Submitted many resumes, most with no response
  • 面試機會少得可憐
  • Interview opportunities were extremely scarce
  • 面試後常常沒有下文
  • Often no follow-up after interviews

"後來我決定回到大學時期實習的公司嘗試,找到了當時的實習經理幫忙推薦,這一步成為了我職業生涯的轉折點。"

"Later, I decided to try my internship company, finding my former manager for a recommendation. This became the turning point in my career."

關鍵啟示:人脈和實習經歷在求職中的價值遠超預期,校園到職場的過渡需要策略調整。

Key Insight: The value of connections and internship experience far exceeds expectations in job hunting, transitioning from campus to workplace requires strategic adjustment.

2 / 5

我的工作:雲端工程師的日常

My Job: Daily Life of a Cloud Engineer

作為一名雲端工程師,我的工作涉及:

As a Cloud Engineer, my work involves:

伺服器運維 Server Operations
應用雲端部署 Cloud Deployment
DevOps實踐 DevOps Practices

主要技術棧:

Main Tech Stack:

Docker Kubernetes CI/CD 雲平台 Cloud Platforms 自動化部署 Automated Deployment 監控系統 Monitoring Systems

我的工作要點:

Key Aspects of My Work:

  • 確保雲端服務的穩定性和安全性
  • Ensuring stability and security of cloud services
  • 優化部署流程,提高開發效率
  • Optimizing deployment processes to improve development efficiency
  • 解決雲端環境中的技術問題
  • Solving technical issues in cloud environments
  • 持續學習和應用新興技術
  • Continuously learning and applying emerging technologies
3 / 5

與時俱進:AI時代的職業成長

Keeping Pace: Career Growth in the AI Era

起點:基礎技能積累

Starting Point: Basic Skills

掌握雲服務和容器技術基礎

Mastering cloud and container basics

入職初期專注於Linux、網絡和基礎架構

Initially focused on Linux, networking and infrastructure

轉折:AI的興起

Turning Point: Rise of AI

公司推動AI應用部署需求

Company's AI deployment needs

負責為數據科學團隊搭建基礎設施

Building infrastructure for data science teams

成長:技能擴展

Growth: Skill Expansion

結合興趣與職業發展

Combining interests with career

學習GPU虛擬化和AI模型部署技術

Learning GPU virtualization and AI model deployment

"AI發展迅速,為雲端工程師帶來全新挑戰和機遇。順應趨勢,我開始學習AI基礎設施部署,這讓我的職業發展更有前景。"

"AI's rapid growth brings new challenges and opportunities for cloud engineers. Following this trend, I started learning AI infrastructure deployment, enhancing my career prospects."

工作中學習 Learning at Work
把握趨勢 Grasping Trends
興趣驅動 Interest-Driven
善用資源 Use Resources
4 / 5

給新畢業生的實踐建議

Practical Advice for New Graduates

  • 善用實習經歷:實習不僅是經驗,更是求職的跳板,維護好實習期間的人脈關係
  • Leverage internship experience: Internships are not just experience, but stepping stones for job hunting; maintain connections made during internships
  • 尋找興趣與工作的交集:熱愛的工作會讓你更有動力,也更容易取得成就
  • Find intersection between interests and work: Work you love gives you more motivation and makes achievement easier
  • 持續學習的習慣:特別是在IT領域,技術更新迭代快,要與時俱進
  • Habit of continuous learning: Especially in IT, where technology updates quickly, stay current
  • 擁抱變化與新浪潮:如AI發展,帶來挑戰也帶來機遇
  • Embrace change and new waves: Like AI development, bringing both challenges and opportunities
建立人脈 Build Connections
追隨熱愛 Follow Passion
持續學習 Continuous Learning

最重要的是:找到你熱愛的領域,在工作中持續成長!

Most importantly: Find your passion and continue to grow in your work!

5 / 5